3.323 \(\int \frac{\sqrt{1-c^2 x^2}}{(a+b \cosh ^{-1}(c x))^2} \, dx\)

Optimal. Leaf size=146 \[ -\frac{\sqrt{1-c x} \sinh \left (\frac{2 a}{b}\right ) \text{Chi}\left (\frac{2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{b^2 c \sqrt{c x-1}}+\frac{\sqrt{1-c x} \cosh \left (\frac{2 a}{b}\right ) \text{Shi}\left (\frac{2 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{b^2 c \sqrt{c x-1}}-\frac{\sqrt{c x-1} \sqrt{c x+1} \sqrt{1-c^2 x^2}}{b c \left (a+b \cosh ^{-1}(c x)\right )} \]

[Out]

-((Sqrt[-1 + c*x]*Sqrt[1 + c*x]*Sqrt[1 - c^2*x^2])/(b*c*(a + b*ArcCosh[c*x]))) - (Sqrt[1 - c*x]*CoshIntegral[(
2*(a + b*ArcCosh[c*x]))/b]*Sinh[(2*a)/b])/(b^2*c*Sqrt[-1 + c*x]) + (Sqrt[1 - c*x]*Cosh[(2*a)/b]*SinhIntegral[(
2*(a + b*ArcCosh[c*x]))/b])/(b^2*c*Sqrt[-1 + c*x])

________________________________________________________________________________________

Rubi [A]  time = 0.335176, antiderivative size = 177, normalized size of antiderivative = 1.21, number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.32, Rules used = {5713, 5697, 5670, 5448, 12, 3303, 3298, 3301} \[ -\frac{\sqrt{1-c^2 x^2} \sinh \left (\frac{2 a}{b}\right ) \text{Chi}\left (\frac{2 a}{b}+2 \cosh ^{-1}(c x)\right )}{b^2 c \sqrt{c x-1} \sqrt{c x+1}}+\frac{\sqrt{1-c^2 x^2} \cosh \left (\frac{2 a}{b}\right ) \text{Shi}\left (\frac{2 a}{b}+2 \cosh ^{-1}(c x)\right )}{b^2 c \sqrt{c x-1} \sqrt{c x+1}}+\frac{\sqrt{c x+1} \sqrt{1-c^2 x^2} (1-c x)}{b c \sqrt{c x-1} \left (a+b \cosh ^{-1}(c x)\right )} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 - c^2*x^2]/(a + b*ArcCosh[c*x])^2,x]

[Out]

((1 - c*x)*Sqrt[1 + c*x]*Sqrt[1 - c^2*x^2])/(b*c*Sqrt[-1 + c*x]*(a + b*ArcCosh[c*x])) - (Sqrt[1 - c^2*x^2]*Cos
hIntegral[(2*a)/b + 2*ArcCosh[c*x]]*Sinh[(2*a)/b])/(b^2*c*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) + (Sqrt[1 - c^2*x^2]*C
osh[(2*a)/b]*SinhIntegral[(2*a)/b + 2*ArcCosh[c*x]])/(b^2*c*Sqrt[-1 + c*x]*Sqrt[1 + c*x])

Rule 5713

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist[((-d)^IntPart[p]*(
d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(1 + c*x)^p*(-1 + c*x)^p*(a + b*Ar
cCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[c^2*d + e, 0] &&  !IntegerQ[p]

Rule 5697

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_.), x_Symbol
] :> Simp[(Sqrt[1 + c*x]*Sqrt[-1 + c*x]*(d1 + e1*x)^p*(d2 + e2*x)^p*(a + b*ArcCosh[c*x])^(n + 1))/(b*c*(n + 1)
), x] - Dist[(c*(2*p + 1)*(-(d1*d2))^(p - 1/2)*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])/(b*(n + 1)*Sqrt[1 + c*x]*Sqrt[
-1 + c*x]), Int[x*(-1 + c^2*x^2)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d1, e1, d2,
 e2, p}, x] && EqQ[e1, c*d1] && EqQ[e2, -(c*d2)] && LtQ[n, -1] && IntegerQ[p - 1/2]

Rule 5670

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*
Cosh[x]^m*Sinh[x], x], x, ArcCosh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 5448

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{1-c^2 x^2}}{\left (a+b \cosh ^{-1}(c x)\right )^2} \, dx &=\frac{\sqrt{1-c^2 x^2} \int \frac{\sqrt{-1+c x} \sqrt{1+c x}}{\left (a+b \cosh ^{-1}(c x)\right )^2} \, dx}{\sqrt{-1+c x} \sqrt{1+c x}}\\ &=\frac{(1-c x) \sqrt{1+c x} \sqrt{1-c^2 x^2}}{b c \sqrt{-1+c x} \left (a+b \cosh ^{-1}(c x)\right )}+\frac{\left (2 c \sqrt{1-c^2 x^2}\right ) \int \frac{x}{a+b \cosh ^{-1}(c x)} \, dx}{b \sqrt{-1+c x} \sqrt{1+c x}}\\ &=\frac{(1-c x) \sqrt{1+c x} \sqrt{1-c^2 x^2}}{b c \sqrt{-1+c x} \left (a+b \cosh ^{-1}(c x)\right )}+\frac{\left (2 \sqrt{1-c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{\cosh (x) \sinh (x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c \sqrt{-1+c x} \sqrt{1+c x}}\\ &=\frac{(1-c x) \sqrt{1+c x} \sqrt{1-c^2 x^2}}{b c \sqrt{-1+c x} \left (a+b \cosh ^{-1}(c x)\right )}+\frac{\left (2 \sqrt{1-c^2 x^2}\right ) \operatorname{Subst}\left (\int \frac{\sinh (2 x)}{2 (a+b x)} \, dx,x,\cosh ^{-1}(c x)\right )}{b c \sqrt{-1+c x} \sqrt{1+c x}}\\ &=\frac{(1-c x) \sqrt{1+c x} \sqrt{1-c^2 x^2}}{b c \sqrt{-1+c x} \left (a+b \cosh ^{-1}(c x)\right )}+\frac{\sqrt{1-c^2 x^2} \operatorname{Subst}\left (\int \frac{\sinh (2 x)}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c \sqrt{-1+c x} \sqrt{1+c x}}\\ &=\frac{(1-c x) \sqrt{1+c x} \sqrt{1-c^2 x^2}}{b c \sqrt{-1+c x} \left (a+b \cosh ^{-1}(c x)\right )}+\frac{\left (\sqrt{1-c^2 x^2} \cosh \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{2 a}{b}+2 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c \sqrt{-1+c x} \sqrt{1+c x}}-\frac{\left (\sqrt{1-c^2 x^2} \sinh \left (\frac{2 a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{2 a}{b}+2 x\right )}{a+b x} \, dx,x,\cosh ^{-1}(c x)\right )}{b c \sqrt{-1+c x} \sqrt{1+c x}}\\ &=\frac{(1-c x) \sqrt{1+c x} \sqrt{1-c^2 x^2}}{b c \sqrt{-1+c x} \left (a+b \cosh ^{-1}(c x)\right )}-\frac{\sqrt{1-c^2 x^2} \text{Chi}\left (\frac{2 a}{b}+2 \cosh ^{-1}(c x)\right ) \sinh \left (\frac{2 a}{b}\right )}{b^2 c \sqrt{-1+c x} \sqrt{1+c x}}+\frac{\sqrt{1-c^2 x^2} \cosh \left (\frac{2 a}{b}\right ) \text{Shi}\left (\frac{2 a}{b}+2 \cosh ^{-1}(c x)\right )}{b^2 c \sqrt{-1+c x} \sqrt{1+c x}}\\ \end{align*}

Mathematica [A]  time = 0.216824, size = 121, normalized size = 0.83 \[ -\frac{\sqrt{1-c^2 x^2} \left (\sinh \left (\frac{2 a}{b}\right ) \left (a+b \cosh ^{-1}(c x)\right ) \text{Chi}\left (2 \left (\frac{a}{b}+\cosh ^{-1}(c x)\right )\right )-\cosh \left (\frac{2 a}{b}\right ) \left (a+b \cosh ^{-1}(c x)\right ) \text{Shi}\left (2 \left (\frac{a}{b}+\cosh ^{-1}(c x)\right )\right )+b \left (c^2 x^2-1\right )\right )}{b^2 c \sqrt{c x-1} \sqrt{c x+1} \left (a+b \cosh ^{-1}(c x)\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 - c^2*x^2]/(a + b*ArcCosh[c*x])^2,x]

[Out]

-((Sqrt[1 - c^2*x^2]*(b*(-1 + c^2*x^2) + (a + b*ArcCosh[c*x])*CoshIntegral[2*(a/b + ArcCosh[c*x])]*Sinh[(2*a)/
b] - (a + b*ArcCosh[c*x])*Cosh[(2*a)/b]*SinhIntegral[2*(a/b + ArcCosh[c*x])]))/(b^2*c*Sqrt[-1 + c*x]*Sqrt[1 +
c*x]*(a + b*ArcCosh[c*x])))

________________________________________________________________________________________

Maple [B]  time = 0.162, size = 361, normalized size = 2.5 \begin{align*}{\frac{1}{ \left ( 4\,cx+4 \right ) \left ( cx-1 \right ) c \left ( a+b{\rm arccosh} \left (cx\right ) \right ) b}\sqrt{-{c}^{2}{x}^{2}+1} \left ( -2\,\sqrt{cx+1}\sqrt{cx-1}{x}^{2}{c}^{2}+2\,{c}^{3}{x}^{3}+\sqrt{cx-1}\sqrt{cx+1}-2\,cx \right ) }-{\frac{1}{ \left ( 2\,cx+2 \right ) \left ( cx-1 \right ) c{b}^{2}}\sqrt{-{c}^{2}{x}^{2}+1} \left ( -\sqrt{cx+1}\sqrt{cx-1}xc+{c}^{2}{x}^{2}-1 \right ){\it Ei} \left ( 1,2\,{\rm arccosh} \left (cx\right )+2\,{\frac{a}{b}} \right ){{\rm e}^{{\frac{b{\rm arccosh} \left (cx\right )+2\,a}{b}}}}}-{\frac{1}{4\,c{b}^{2} \left ( a+b{\rm arccosh} \left (cx\right ) \right ) }\sqrt{-{c}^{2}{x}^{2}+1} \left ( 2\,\sqrt{cx-1}\sqrt{cx+1}xbc+2\,{x}^{2}b{c}^{2}+2\,{\rm arccosh} \left (cx\right ){\it Ei} \left ( 1,-2\,{\rm arccosh} \left (cx\right )-2\,{\frac{a}{b}} \right ){{\rm e}^{-2\,{\frac{a}{b}}}}b+2\,{\it Ei} \left ( 1,-2\,{\rm arccosh} \left (cx\right )-2\,{\frac{a}{b}} \right ){{\rm e}^{-2\,{\frac{a}{b}}}}a-b \right ){\frac{1}{\sqrt{cx-1}}}{\frac{1}{\sqrt{cx+1}}}}+{\frac{1}{2\,c \left ( a+b{\rm arccosh} \left (cx\right ) \right ) b}\sqrt{-{c}^{2}{x}^{2}+1}{\frac{1}{\sqrt{cx-1}}}{\frac{1}{\sqrt{cx+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x))^2,x)

[Out]

1/4*(-c^2*x^2+1)^(1/2)*(-2*(c*x+1)^(1/2)*(c*x-1)^(1/2)*x^2*c^2+2*c^3*x^3+(c*x-1)^(1/2)*(c*x+1)^(1/2)-2*c*x)/(c
*x+1)/(c*x-1)/c/(a+b*arccosh(c*x))/b-1/2*(-c^2*x^2+1)^(1/2)*(-(c*x+1)^(1/2)*(c*x-1)^(1/2)*x*c+c^2*x^2-1)*Ei(1,
2*arccosh(c*x)+2*a/b)*exp((b*arccosh(c*x)+2*a)/b)/(c*x+1)/(c*x-1)/c/b^2-1/4/(c*x+1)^(1/2)/(c*x-1)^(1/2)*(-c^2*
x^2+1)^(1/2)*(2*(c*x-1)^(1/2)*(c*x+1)^(1/2)*x*b*c+2*x^2*b*c^2+2*arccosh(c*x)*Ei(1,-2*arccosh(c*x)-2*a/b)*exp(-
2*a/b)*b+2*Ei(1,-2*arccosh(c*x)-2*a/b)*exp(-2*a/b)*a-b)/c/b^2/(a+b*arccosh(c*x))+1/2/(c*x+1)^(1/2)/(c*x-1)^(1/
2)*(-c^2*x^2+1)^(1/2)/c/(a+b*arccosh(c*x))/b

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{{\left ({\left (c^{2} x^{2} - 1\right )}{\left (c x + 1\right )} \sqrt{c x - 1} +{\left (c^{3} x^{3} - c x\right )} \sqrt{c x + 1}\right )} \sqrt{-c x + 1}}{a b c^{3} x^{2} + \sqrt{c x + 1} \sqrt{c x - 1} a b c^{2} x - a b c +{\left (b^{2} c^{3} x^{2} + \sqrt{c x + 1} \sqrt{c x - 1} b^{2} c^{2} x - b^{2} c\right )} \log \left (c x + \sqrt{c x + 1} \sqrt{c x - 1}\right )} + \int \frac{{\left ({\left (2 \, c^{2} x^{2} + 1\right )}{\left (c x + 1\right )}^{\frac{3}{2}}{\left (c x - 1\right )} + 2 \,{\left (2 \, c^{3} x^{3} - c x\right )}{\left (c x + 1\right )} \sqrt{c x - 1} +{\left (2 \, c^{4} x^{4} - 3 \, c^{2} x^{2} + 1\right )} \sqrt{c x + 1}\right )} \sqrt{-c x + 1}}{a b c^{4} x^{4} +{\left (c x + 1\right )}{\left (c x - 1\right )} a b c^{2} x^{2} - 2 \, a b c^{2} x^{2} + 2 \,{\left (a b c^{3} x^{3} - a b c x\right )} \sqrt{c x + 1} \sqrt{c x - 1} + a b +{\left (b^{2} c^{4} x^{4} +{\left (c x + 1\right )}{\left (c x - 1\right )} b^{2} c^{2} x^{2} - 2 \, b^{2} c^{2} x^{2} + 2 \,{\left (b^{2} c^{3} x^{3} - b^{2} c x\right )} \sqrt{c x + 1} \sqrt{c x - 1} + b^{2}\right )} \log \left (c x + \sqrt{c x + 1} \sqrt{c x - 1}\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x))^2,x, algorithm="maxima")

[Out]

-((c^2*x^2 - 1)*(c*x + 1)*sqrt(c*x - 1) + (c^3*x^3 - c*x)*sqrt(c*x + 1))*sqrt(-c*x + 1)/(a*b*c^3*x^2 + sqrt(c*
x + 1)*sqrt(c*x - 1)*a*b*c^2*x - a*b*c + (b^2*c^3*x^2 + sqrt(c*x + 1)*sqrt(c*x - 1)*b^2*c^2*x - b^2*c)*log(c*x
 + sqrt(c*x + 1)*sqrt(c*x - 1))) + integrate(((2*c^2*x^2 + 1)*(c*x + 1)^(3/2)*(c*x - 1) + 2*(2*c^3*x^3 - c*x)*
(c*x + 1)*sqrt(c*x - 1) + (2*c^4*x^4 - 3*c^2*x^2 + 1)*sqrt(c*x + 1))*sqrt(-c*x + 1)/(a*b*c^4*x^4 + (c*x + 1)*(
c*x - 1)*a*b*c^2*x^2 - 2*a*b*c^2*x^2 + 2*(a*b*c^3*x^3 - a*b*c*x)*sqrt(c*x + 1)*sqrt(c*x - 1) + a*b + (b^2*c^4*
x^4 + (c*x + 1)*(c*x - 1)*b^2*c^2*x^2 - 2*b^2*c^2*x^2 + 2*(b^2*c^3*x^3 - b^2*c*x)*sqrt(c*x + 1)*sqrt(c*x - 1)
+ b^2)*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-c^{2} x^{2} + 1}}{b^{2} \operatorname{arcosh}\left (c x\right )^{2} + 2 \, a b \operatorname{arcosh}\left (c x\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x))^2,x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*x^2 + 1)/(b^2*arccosh(c*x)^2 + 2*a*b*arccosh(c*x) + a^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{- \left (c x - 1\right ) \left (c x + 1\right )}}{\left (a + b \operatorname{acosh}{\left (c x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c**2*x**2+1)**(1/2)/(a+b*acosh(c*x))**2,x)

[Out]

Integral(sqrt(-(c*x - 1)*(c*x + 1))/(a + b*acosh(c*x))**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-c^{2} x^{2} + 1}}{{\left (b \operatorname{arcosh}\left (c x\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*x^2+1)^(1/2)/(a+b*arccosh(c*x))^2,x, algorithm="giac")

[Out]

integrate(sqrt(-c^2*x^2 + 1)/(b*arccosh(c*x) + a)^2, x)